师资

EN       返回上一级       师资搜索
李勤
副研究员
liqin@sustech.edu.cn

基本信息

姓名: 李勤

职称: 副研究员

邮 箱:liqin@sustech.edu.cn

研究领域: 量子场论的数学基础

 

教育背景

2001-2005, 中国科学技术大学, 获数学学士学位

2005-2011, 美国加州大学伯克利分校, 获数学博士学位

 

工作经历

2011.9-2015.7  中国科学技术大学, 特任副教授

2013.6-2015.7  香港中文大学,博士后研究员

2015.7-2021.9  南方科技大学数学系,助理教授

2021.10-至今    深圳国际量子研究院,副研究员

 

论文及专利

(1).  “Bargmann-Fock sheaves on Kähler manifolds”, Communications in Mathematical Physics 388 (2021), no. 3, 1297–1322.

(2). “Quantization of Kähler manifolds”,  Journal of Geometry and Physics, 163 (2021), 104143, 13 pp

(3).  “One-dimensional Chern-Simons theory and deformation quantization”, accepted by ICCM Proceedings 2018.

(4) . “BV quantization of the Rozansky-Witten model”, Communications in Mathematical Physics 355(2017), 97-144.

(5).  “Batalin-Vilkovisky quantization and the algebraic index”, Advances in Mathematics 317 (2017),575-639.

(6).  “On the B-twisted topological sigma model and Calabi-Yau geometry”, Journal of Differential Geometry 102 (2016), no. 3, 409-484.

(7).  “Cardy algebras and sewing constraints, II” Advances in Mathematics 262 (2014), 604-681.

(8).  “On the B-twisted quantum geometry of Calabi-Yau manifolds”, Proceedings of ICCM 2013

(9).  “A geometric construction of representations of the Berezin-Toeplitz quantization”, submitted to Advances in Theoretical and  Mathematical Physics, available at arXiv:2001.10869.

(10).  “Kapranov’s L∞ structures, Fedosov’s star products, and one-loop exact BV quantizations on Kähler manifolds”, submitted to Communications in Number Theory and Physics, available at arXiv:2008.07057.