师资
2007年本科毕业于北京大学,获地球物理学学士学位以及数学与应用数学双学位。2013年于美国南加州大学(USC)获地质学博士学位。2013年至2019年以Research Fellow身份在日本防灾科学技术研究所(NIED)从事研究工作。2019年9月正式加入南方科技大学地球与空间科学系,任助理教授。本人的研究方向为地震破裂传播的理论模型和数值模拟,断层结构演化,岩石摩擦实验,以及地震物理学。以第一作者或者共同作者在国际知名期刊诸如Nature Geoscience, Nature, Nature Communications等上共发表论文25篇。2次在AGU会议上担任主题会议召集人。作为主要客座编辑组织并编撰了Tectonophysics特刊Physics of Earthquake Rupture Propagation。多次为国际知名期刊和美国自然科学基金委担任同行评审。
教育经历
2007 - 2013: 博士,美国南加州大学,地球科学系,导师:Yehuda Ben-Zion
2003 - 2007: 学士,北京大学,地球与空间科学学院
学士双学位 (数学与应用数学),北京大学,数学科学学院
工作经历
2019 - 至今:助理教授,南方科技大学,地球与空间科学系
2013 - 2019:Research Fellow,日本防灾科学技术研究所,地震海啸防灾研究部门,导师:Eiichi Fukuyama
教学经历
2007 - 2013: 助教,美国南加州大学,地球科学系
获奖经历
2023:AGU旗下期刊Geophysical Research Letters优秀审稿人(2022年度)
2021:AGU旗下期刊Journal of Geophysical Research: Solid Earth优秀审稿人(2020年度)
2020:AGU旗下期刊Journal of Geophysical Research: Solid Earth优秀审稿人(2019年度)
2019:AGU旗下期刊Journal of Geophysical Research: Solid Earth优秀审稿人(2018年度)
2019: 日本防灾科学技术研究所成就奖(2018年度)
2018: 日本地震学会青年科学家奖(2017年度)
2006: 中国科学院地球物理专业奖学金,二等奖
2004: 北京大学学习优秀奖
2003: 国家奖学金
学术服务
编辑:Geophysical Journal International (GJI) (2023 - 至今)
客座编辑:Tectonophysics (2017 - 2018)
审稿人: Nature Geoscience; Nature Communications; Science Advances; AGU Geophysical Monograph Series; JGR-Solid Earth; GRL; Gcubed; EPSL; Tectonophysics; JSG; BSSA; TSR; SRL; EPS; GJI; PAGEOPH 等
研究领域
• 地震破裂传播的理论模型和数值模拟
• 损伤力学和断裂力学
• 岩石摩擦实验
• 断层演化
• 常规地震和慢地震
• 俯冲带地震
• 地震物理学
已提交论文
[S7] Lu, R., Y. Gao, Y. Hu, X. Lai, H. Li, J. Lu, L. Shao, P. Wang, W. Wang, W. Wang, C. Xia, H. Xu, R. Xu, S. Xu, H. Yue, L. Zhao, X. Zheng, E. Zhou, and Y. Zou, Quakes: from the Earth to Stars, submitted to Scientia Sinica Physica, Mechanica & Astronomica, on December 5, 2023.
[S6] Wan, Z., R. Dong, D. Wang, S. Xu, Z. Wang, and Q. Wang, Along-strike Variation of Rupture Characteristics and Aftershock Patterns of the 2023 Mw 7.8 Türkiye Earthquake Controlled by Fault Structure, submitted to Seismological Research Letters, on November 14, 2023.
[S5] Wang, Q., Y. Zhang, L. Wang, P. Yu, S. Guerin-Marthe, X. Peng, S. Xu, P. Martínez-Garzón, and M. Bohnhoff, Evolution of shear rupture along a prescribed interface using the Discontinuous Deformation Analysis method, submitted to Rock Mechanics and Rock Engineering, on August 29, 2023.
[S4] Wang, L., S. Xu, Y. Zhuo, P. Liu, and S. Ma, Unraveling the roles of fault asperities over earthquake cycles, submitted to Earth and Planetary Science Letters, in revision.
[S3] Xu, S., Does stress drop positively or negatively correlate with rupture speed?, submitted to Journal of Geophysical Research: Solid Earth, on April 16, 2023. Preprint link: https://arxiv.org/abs/2304.08016
[S2] Liu-Zeng, J., Z. Liu, X. Liu, C. Milliner, J.-P. Avouac, A. Rodriguez Padilla, S. Xu, W. Yao, Y. Klinger, L. Han, Y. Shao, X. Yan, S. Aati, and Z. Shao, Multifault rupture of the 2021 Mw7.4 Maduo (China) earthquake reveals fault growth toward a stress-favored orientation, submitted on February 22, 2023.
[S1] Ji, Y., A. R. Niemeijer, D. H. Baden, F. Yamashita, S. Xu, L. B. Hunfeld, R. P. J. Pijnenburg, E. Fukuyama, and C. J. Spiers, Friction law for earthquake nucleation: size doesn’t matter, submitted on February 2, 2022, in review.
[S0] Fukuyama, E., S. Xu, and F. Yamashita, Supersonic propagation of slow slip rupture during rock friction experiments, submitted, 2020.
同行评审论文
[26] Ding, X., J. Xie, and S. Xu (2024), Dynamic activation of near-orthogonal conjugate faults during earthquakes: Insights from the 2023 Türkiye Mw 7.6 earthquake, Chinese Science Bulletin, doi:10.1360/TB-2023-0894.
[25] Ding, X., S. Xu, Y. Xie, M. van den Ende, J. Premus, and J.-P. Ampuero (2023), The sharp turn: Backward rupture branching during the 2023 Mw 7.8 Kahramanmaraş (Türkiye) earthquake, Seismica, 2(3), doi:10.26443/seismica.v2i3.1083. Preprint link: https://arxiv.org/abs/2307.06051
[24] Cheng, C., D. Wang, Q. Yao, L. Fang, S. Xu, Z. Huang, T. Liu, Z. Wang, and X. Huang (2023), The 2021 Mw 7.3 Madoi, China earthquake: Transient supershear ruptures on a presumed immature strike-slip fault, Journal of Geophysical Research: Solid Earth, Special Issue "100-Year Anniversary of the Great 1920 Haiyuan Earthquake: What Have We Learned on Large Continental Earthquakes and Faults?", 128, e2022JB024641, doi:10.1029/2022JB024641.
[23] Xu, S., E. Fukuyama, F. Yamashita, H. Kawakata, K. Mizoguchi, and S. Takizawa (2023), Fault strength and rupture process controlled by fault surface topography, Nature Geoscience, 16, 94–100, doi:10.1038/s41561-022-01093-z.
[22] Yamashita, F., E. Fukuyama, and S. Xu (2022), Foreshock activity promoted by locally elevated loading rate on a 4-meter-long laboratory fault, Journal of Geophysical Research: Solid Earth, 127(3), e2021JB023336, doi:10.1029/2021JB023336.
[21] Yoshida, K., N. Uchida, H. Kubo, R. Takagi, and S. Xu (2022), Prevalence of updip rupture propagation in interplate earthquakes along the Japan Trench, Earth and Planetary Science Letters, 578, 117306, doi:10.1016/j.epsl.2021.117306.
[20] Yamashita, F., E. Fukuyama, S. Xu, H. Kawakata, K. Mizoguchi, and S. Takizawa (2021), Two end-member earthquake preparations illuminated by foreshock activity on a meter-scale laboratory fault, Nature Communications, 12, 4302, doi:10.1038/s41467-021-24625-4.
[19] Xu, S. (2020), Recognizing fracture pattern signatures contributed by seismic loadings, Interpretation, Special Issue "Seismic interpretation of fractures in deep subsurface", 8(4), SP95–SP108, doi:10.1190/int-2020-0033.1. Preprint link: https://eartharxiv.org/repository/view/308/
[18] Xu, S., E. Fukuyama, F. Yamashita, and S. Takizawa (2019), Evolution of Fault-Interface Rayleigh Wave speed over simulated earthquake cycles in the lab: Observations, interpretations, and implications, Earth and Planetary Science Letters, 524, 115720, doi:10.1016/j.epsl.2019.115720.
[17] Xu, S. (2019), Probing earthquake physics using multidisciplinary approaches, Zisin, 72(2), 17–34, doi:10.4294/zisin.2018-12.
[16] Xu, S., E. Fukuyama, and F. Yamashita (2019), Robust estimation of rupture properties at propagating front of laboratory earthquakes, Journal of Geophysical Research: Solid Earth, 124(1), 766–787, doi:10.1029/2018JB016797.
[15] Xu, S., E. Fukuyama, A. Sagy, and M.-L. Doan (2018), Preface: Physics of Earthquake Rupture Propagation, Tectonophysics, Special Issue "Physics of Earthquake Rupture Propagation", 733, 1–3, doi:10.1016/j.tecto.2018.04.013.
[14] Yamashita, F., E. Fukuyama, S. Xu, K. Mizoguchi, H. Kawakata, and S. Takizawa (2018), Rupture preparation process controlled by surface roughness on meter-scale laboratory fault, Tectonophysics, Special Issue "Physics of Earthquake Rupture Propagation", 733, 193–208, doi:10.1016/j.tecto.2018.01.034.
[13] Fukuyama, E., K. Tsuchida, H. Kawakata, F. Yamashita, K. Mizoguchi, and S. Xu (2018), Spatiotemporal complexity of 2-D rupture nucleation process observed by direct monitoring during large-scale biaxial rock friction experiments, Tectonophysics, Special Issue "Physics of Earthquake Rupture Propagation", 733, 182–192, doi:10.1016/j.tecto.2017.12.023.
[12] Xu, S., E. Fukuyama, F. Yamashita, K. Mizoguchi, S. Takizawa, and H. Kawakata (2018), Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments, Tectonophysics, Special Issue "Physics of Earthquake Rupture Propagation", 733, 209-231, doi:10.1016/j.tecto.2017.11.039.
[11] Aldam, M., S. Xu, E.A. Brener, Y. Ben-Zion, and E. Bouchbinder (2018), Non-monotonicity of the frictional bimaterial effect, Journal of Geophysical Research: Solid Earth, 122(10), 8270–8284, doi:10.1002/2017JB014665.
[10] Xu, S., and Y. Ben-Zion (2017), Theoretical constraints on dynamic pulverization of fault zone rocks, Geophysical Journal International, 209(1), 282–296, doi:10.1093/gji/ggx033.
[9] Xu, S., E. Fukuyama, H. Yue, and J.-P. Ampuero (2016), Simple crack models explain deformation induced by subduction zone megathrust earthquakes, Bulletin of the Seismological Society of America, 106(5), 2275–2289, doi:10.1785/0120160079.
[8] Fukuyama, E., S. Xu, F. Yamashita, and K. Mizoguchi (2016), Cohesive zone length of metagabbro at supershear rupture velocity, Journal of Seismology, Special Issue "Imaging Earthquakes and Earth Structure Through Waves" Honoring Professor Raul Madariaga, 20(4), 1207–1215, doi:10.1007/s10950-016-9588-2.
[7] Yamashita, F., E. Fukuyama, K. Mizoguchi, S. Takizawa, S. Xu, and H. Kawakata (2015), Scale dependence of rock friction at high work rate, Nature, 528, 254–257, doi:10.1038/nature16138.
[6] Xu, S., E. Fukuyama, Y. Ben-Zion, and J.-P. Ampuero (2015), Dynamic rupture activation of backthrust fault branching, Tectonophysics, 644–645, 161–183, doi: 10.1016/j.tecto.2015.01.011.
[5] Xu, S., Y. Ben-Zion, J.-P. Ampuero, and V. Lyakhovsky (2015), Dynamic ruptures on a frictional interface with off-fault brittle damage: Feedback mechanisms and effects on slip and near-fault motion, Pure and Applied Geophysics, 172, 1243–1267, doi: 10.1007/s00024-014-0923-7.
[4] Xu, S., and Y. Ben-Zion (2013), Numerical and theoretical analyses of in-plane dynamic rupture on a frictional interface and off-fault yielding patterns at different scales, Geophysical Journal International, 193, 304–320, doi: 10.1093/gji/ggs105.
[3] Xu, S., Y. Ben-Zion, and J.-P. Ampuero (2012b), Properties of inelastic yielding zones generated by in-plane dynamic ruptures: II. Detailed parameter-space study, Geophysical Journal International, 191, 1343–1360, doi: 10.1111/j.1365-246X.2012.05685.x.
[2] Xu, S., Y. Ben-Zion, and J.-P. Ampuero (2012a), Properties of inelastic yielding zones generated by in-plane dynamic ruptures: I. Model description and basic results, Geophysical Journal International, 191, 1325-1342, doi: 10.1111/j.1365-246X.2012.05679.x.
[1] Ben-Zion, Y., T. Rockwell, Z. Shi, and S. Xu (2012), Reversed-polarity secondary deformation structures near fault stepovers, Journal of Applied Mechanics, Special Issue Honoring Professor James R. Rice, 79(3), 031025, doi:10.1115/1.4006154.