Arnaud Nicolas Mignan

Mignan教授于2020年加入南方科技大学。2006年他在巴黎地球物理学院获得地球物理学博士学位。2006-2010年期间作为高级巨灾风险建模员在伦敦首屈一指的灾害建模公司RMS工作。在加入我校前,他是苏黎世联邦理工学院(ETHZ)和瑞士能源研究中心(SCCER)的高级研究学者。截至2020年,Mignan教授已经在《自然(Nature)》、《应用能源(Applied Energy)》等高影响因子杂志上发表60多篇文章,包括多本专著和多篇应邀发表综述文章。他的Google学术引用量超过1500,H指数为24。他在巨灾动态、多米诺效应和重要基础设施应力测试等方面的工作曾被纪录到欧洲新闻电视台(Euronews)一部纪录片中,并被瑞士多家知名媒体报道。他也曾受邀到哈佛大学、斯坦福大学等世界顶级大学中分享他的研究工作。




[66] Mignan A., Ouillon G., Sornette D., Freund F. (2020), Global Earthquake Forecasting System (GEFS): The Challenges Ahead. The European Physical Journal Special Topics, in press, x-x, doi: 10.1140/epjst/e2020-000261-8

[65] Freund F., Ouillon G., Mignan A., Sornette D. (2020), Preface to the Global Earthquake Forecasting System (GEFS) Special Issue: Towards Using Non-seismic Precursors for the Prediction of Large Earthquakes. The European Physical Journal Special Topics, in press, x-x, doi: 10.1140/epjst/e2020-000242-4

[64] Mignan A., Wang Z. (2020), Exploring the Space of Possibilities in Cascading Disasters with Catastrophe Dynamics. International Journal of Environmental Research and Public Health, 17, 7317, doi: 10.3390/ijerph17197317

[63] Wang Z., Broccardo M., Mignan A., Sornette D. (2020), The dynamics of entropy in the COVID-19 outbreaks. Nonlinear Dynamcis, 101, 1847-1869, doi: 10.1007/s11071-020-05871-5

[62] Mignan A., Broccardo M. (2020), Comment on 'Elastic strain energy and pore-fluid pressure control of aftershocks' by Terakawa et al. [Earth Planet. Sci. Lett. 535 (2020) 116103]. Earth and Planetary Science Letters, 544, 116402, doi: 10.1016/j.epsl.2020.116402

[61] Broccardo M., Mignan A., Grigoli F., Karvounis D., Rinaldi A.P., Danciu L., Hofmann H., Milkereit C., Dahm T., Zimmermann G., Hjörleifsdóttir V., Wiemer S. (2020), Induced seismicity risk analysis of the hydraulic stimulation of a geothermal well on Geldinganes, Iceland. Natural Hazards and Earth System Sciences, 20, 1573-1593, doi: 10.5194/nhess-20-1573-2020

[60] Mignan A., Broccardo M. (2020), Neural Network Applications in Earthquake Prediction (1994-2019): Meta-Analytic and Statistical Insights on Their Limitations. Seismological Research Letters, 91 (4), 2330-2342, doi: 10.1785/0220200021

[59] Villiger L., Gischig V.S., Doetsch J., Krietsch H., Dutler N.O., Jalali M., Valley B., Selvadurai P.A., Mignan A., Plenkers K., Giardini D., Amann F., Wiemer S. (2020), Influence of reservoir geology on seismic response during decameter-scale hydraulic stimulations in crystallne rock. Solid Earth, 11, 627-655, doi: 10.5194/se-11-627-2020

[58] Argyroudis S.A., Fotopoulou S., Karafagka S., Pitiliakis K., Selva J., Salzano E., Basco A., Crowley H., Rodrigues D., Matos J.P., Schleiss A.J., Courage W., Reinders J., Cheng Y., Akka S., Uckan E., Erdik M., Giardini D., Mignan A. (2020), A risk‐based multi‐level stress test methodology: application to six critical non‐nuclear infrastructures in Europe. Natural Hazards, 100, 595-633, doi: 10.1007/s11069-019-03828-5

[57] Mignan A. (2019), Forecasting aftershocks: Back to square one after a Deep Learning anticlimax. Temblor, Oct 2019, online, doi: 10.32858/temblor.053

[56] Mignan A., Broccardo M. (2019), One neuron versus deep learning in aftershock prediction. Nature, 574, E1-E3, doi: 10.1038/s41586-019-1582-8

[55] Mignan A. (2019), Generalized earthquake frequency–magnitude distribution described by asymmetric Laplace mixture modelling. Geophysical Journal International, 219 (2), 1348-1364, doi: 10.1093/gji/ggz373

[54] Mignan A. (2020), Asymmetric Laplace Mixture Modelling of Incomplete Power-Law Distributions: Application to ‘Seismicity Vision’. In: Arai K., Kapoor S. (eds), Advances in Computer Vision, CVC 2019, Advances in Intelligent Systems and Computing, 944, 30-43, doi: 10.1007/978-3-030-17798-0_4

[53] Esposito S., Stojadinovic B., Babic A., Dolsek M., Iqbal S., Selva J., Broccardo M., Mignan A., Giardini D. (2020), A risk-based multi-level methodology to stress test critical infrastructure systems. Journal of Infrastructure Systems, 26 (1), 04019035, doi: 10.1061/(ASCE)IS.1943-555X.0000520

[52] Mignan A., Broccardo M. (2019), A Deeper Look into ‘Deep Learning of Aftershock Patterns Following Large Earthquakes’: Illustrating First Principles in Neural Network Physical Interpretability. In: Rojas I., Joya G., Catala A. (eds), Advances in Computational Intelligence, IWANN 2019, Lecture Notes in Computer Science, 11506, 3-14, doi: 10.1007/978-3-030-20521-8_1

[51] Mignan A. (2019), A preliminary text classification of the precursory accelerating seismicity corpus: inference on some theoretical trends in earthquake predictability research from 1988 to 2018. Journal of Seismology, 23 (4), 771-785, doi: 10.1007/s10950-019-09833-2

[50] Staudenmaier N., Tormann T., Edwards B., Mignan A., Wiemer S. (2019), The frequency-size scaling of non-volcanic tremors beneath the San Andreas Fault at Parkfield: Possible implications for seismic energy release. Earth and Planetary Science Letters, 516, 77-107, doi: 10.1016/j.epsl.2019.04.006

[49] Mignan A., Karnouvis D., Broccardo M., Wiemer S., Giardini D. (2019), Including seismic risk mitigation measures into the Levelized Cost Of Electricity in enhanced geothermal systems for optimal siting. Applied Energy, 238, 831-850, doi: 10.1016/j.apenergy.2019.01.109

[48] Mignan A., Broccardo M., Wiemer S., Giardini D. (2019), Autonomous Decision-Making Against Induced Seismicity in Deep Fluid Injections. In: Ferrari A., Laloui L. (eds), Energy Geotechnics, SEG 2018, Springer Series in Geomechanics and Geoengineering, , 369-376, doi: 10.1007/978-3-319-99670-7_46

[47] Seif S., Zechar J.D., Mignan A., Nandan S., Wiemer S. (2019), Foreshocks and Their Potential Deviation from General Seismicity. Bulletin of the Seismological Society of America, 109 (1), 1-18, doi: 10.1785/0120170188

[46] Mignan A. (2018), Metacollecting or the process of collecting collections, with examples from The Tricottet Collection. Colligo, 1 (2), 35-50, perma: YQ5W-BN5Z

[45] Woo G., Mignan A. (2018), Counterfactual Analysis of Runaway Earthquakes. Seismological Research Letters, 89 (6), 2266-2273, doi: 10.1785/0220180138

[44] Mignan A. (2018), Utsu aftershock productivity law explained from geometric operations on the permanent static stress field of mainshocks. Nonlinear Processes in Geophysics, 25, 241-250, doi: 10.5194/npg-25-241-2018

[43] Mignan A., Danciu L., Giardini D. (2018), Considering large earthquake clustering in seismic risk analysis. Natural Hazards, 91 (Supplement 1), 149–172, doi: 10.1007/s11069-016-2549-9

[42] Scolobig A., Komendantova N., Mignan A. (2017), Mainstreaming Multi-Risk Approaches into Policy. Geosciences, 7 (4), 129, doi: 10.3390/geosciences7040129

[41] Broccardo M., Mignan A., Wiemer S., Stojadinovic B., Giardini D. (2017), Hierarchical Bayesian Modeling of Fluid‐Induced Seismicity. Geophysical Research Letters, 44 (22), 11,357-11,367, doi: 10.1002/2017GL075251

[40] Mignan A., Broccardo M., Wiemer S., Giardini D. (2017), Induced seismicity closed-form traffic light system for actuarial decision-making during deep fluid injections. Scientific Reports, 7, 13607, doi: 10.1038/s41598-017-13585-9

[39] Mignan A., Komendantova N., Scolobig A., Fleming K. (2017), Chapter 14: Multi-Risk Assessment and Governance. Handbook of Disaster Risk Reduction & Management, , 357-381, doi: 10.1142/9789813207950_0014

[38] Panzera F., Mignan A., Vogfjord K.S. (2017), Spatiotemporal evolution of the completeness magnitude of the Icelandic earthquake catalogue from 1991 to 2013. Journal of Seismology, 21 (4), 615–630, doi: 10.1007/s10950-016-9623-3

[37] Seif S., Mignan A., Zechar J.D., Werner M.J., Wiemer S. (2017), Estimating ETAS: The effects of truncation, missing data, and model assumptions. Journal of Geophysical Research, 122 (1), 449-469, doi: 10.1002/2016JB012809

[36] Mignan A. (2016), Reply to 'Comment on ‘Revisiting the 1894 Omori Aftershock Dataset with the Stretched Exponential Function’ by A. Mignan' by S. Hainzl and A. Christophersen. Seismological Research Letters, 87 (5), 1134-1137, doi: 10.1785/0220160110

[35] Mignan A. (2016), Static behaviour of induced seismicity. Nonlinear Processes in Geophysics, 23, 107-113, doi: 10.5194/npg-23-107-2016

[34] Mignan A., Scolobig A., Sauron A. (2016), Using reasoned imagination to learn about cascading hazards: a pilot study. Disaster Prevention and Management, 25 (3), 329-344, doi: 10.1108/DPM-06-2015-0137

[33] Mignan A. (2016), Metacollecting and use of 'collection-objects' in prosopographical studies of meteorite collections. Meteorites, 4 (1-2), 11-22, doi: 10.5277/met160102

[32] Mignan A. (2016), Revisiting the 1894 Omori Aftershock Dataset with the Stretched Exponential Function. Seismological Research Letters, 87 (3), 685-689, doi: 10.1785/0220150230

[31] Mignan A., Chen C.C. (2016), The Spatial Scale of Detected Seismicity. Pure and Applied Geophysics, 173 (1), 117–124, doi: 10.1007/s00024-015-1133-7

[30] Mignan A. (2015), Modeling aftershocks as a stretched exponential relaxation. Geophysical Research Letters, 42 (22), 9726-9732, doi: 10.1002/2015GL066232

[29] Liu Z., Nadim F., Garcia-Aristizabal A., Mignan A., Fleming K., Luna B.Q. (2015), A three-level framework for multi-risk assessment. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 9 (2), 59-74, doi: 10.1080/17499518.2015.1041989

[28] Mignan A., Danciu L., Giardini D. (2015), Reassessment of the Maximum Fault Rupture Length of Strike‐Slip Earthquakes and Inference on Mmax in the Anatolian Peninsula, Turkey. Seismological Research Letters, 86 (3), 890-900, doi: 10.1785/0220140252

[27] Cara M., Cansi Y., Schlupp A., ..., Mignan A., ... (2015), SI-Hex: a new catalogue of instrumental seismicity for metropolitan France. Bulletin de la Société Géologique de France, 186 (1), 3-19, doi: 10.2113/gssgfbull.186.1.3

[26] Mignan A., Landtwing D., Kaestli P., Mena B., Wiemer S. (2015), Induced seismicity risk analysis of the 2006 Basel, Switzerland, Enhanced Geothermal System project: Influence of uncertainties on risk mitigation. Geothermics, 53, 133-146, doi: 10.1016/j.geothermics.2014.05.007

[25] Mignan A., Wiemer S., Giardini D. (2014), The quantification of low-probability–high-consequences events: part I. A generic multi-risk approach. Natural Hazards, 73 (3), 1999–2022, doi: 10.1007/s11069-014-1178-4

[24] Tormann T., Wiemer S., Mignan A. (2014), Systematic survey of high‐resolution b value imaging along Californian faults: Inference on asperities. Journal of Geophysical Research, 119 (3), 2029-2054, doi: 10.1002/2013JB010867

[23] Mignan A., Chouliaras G. (2014), Fifty Years of Seismic Network Performance in Greece (1964–2013): Spatiotemporal Evolution of the Completeness Magnitude. Seismological Research Letters, 85 (3), 657-667, doi: 10.1785/0220130209

[22] Mignan A. (2014), The debate on the prognostic value of earthquake foreshocks: A meta-analysis. Scientific Reports, 4, 4099, doi: 10.1038/srep04099

[21] Komendantova N., Mrzyglocki R., Mignan A., Khazai B., Wenzel F., Patt A., Fleming K. (2014), Multi-hazard and multi-risk decision-support tools as a part of participatory risk governance: Feedback from civil protection stakeholders. International Journal of Disaster Risk Reduction, 8, 50-67, doi: 10.1016/j.ijdrr.2013.12.006

[20] Kraft T., Mignan A., Giardini D. (2013), Optimization of a large-scale microseismic monitoring network in northern Switzerland. Geophysical Journal International, 195 (1), 474–490, doi: 10.1093/gji/ggt225

[19] Mignan A., Jiang C., Zechar J.D., Wiemer S., Wu Z., Huang Z. (2013), Completeness of the Mainland China Earthquake Catalog and Implications for the Setup of the China Earthquake Forecast Testing Center. Bulletin of the Seismological Society of America, 103 (2A), 845-859,