Faculty

中文       Go Back       Search
JING Zhicheng
Associate Professor
0755-88018831
jingzc@sustech.edu.cn

Dr. Jing received a B.S. in 2000 and a M.S. in 2003, both in Geophysics at Peking University. He then earned his Ph.D. in 2010 in Geophysics at Yale University. After graduate school, he was a Postdoctoral Scholar in the Center for Advanced Radiation Sources, the University of Chicago, before starting as an Assistant Professor in 2013 in the Department of Earth, Environmental, and Planetary Sciences at Case Western Reserve University. In July 2018, he joined the Department of Earth and Space Sciences at Southern University of Science and Technology as an Associate Professor. Dr. Jing studies the physical and chemical properties of Earth and planetary materials under planetary mantle and core conditions and apply these material properties to understanding the structure, composition, and dynamics of Earth and planetary interiors. He conducts high-pressure and high-temperature experiments in large-volume hydraulic presses in his lab and at synchrotron X-ray facilities. His current research focuses on determining the density and sound velocity of silicate melts, iron-alloying liquids, lower-mantle minerals, and subducting slab materials at high pressures through a range of experimental and theoretical approaches.

 

Education
2010  Ph.D., Department of Geology and Geophysics, Yale University, New Haven, USA
2003  M.S., Department of Geophysics, Peking University, Beijing, China
2000  B.S., Department of Geophysics, Peking University, Beijing, China

 

Employment
Jul 2018 - present Associate Professor, Department of Earth and Space Sciences
                 Southern University of Science and Technology, Shenzhen, China
Jul 2013 - Jun 2018 Assistant Professor, Department of Earth, Environmental, and Planetary Sciences
                 Case Western Reserve University, Cleveland, USA
Jul 2010 - Jun 2013 Postdoctoral Scholar, Center for Advanced Radiation Sources
                 The University of Chicago, Chicago, USA


Research

1. Physical and chemical properties of Earth and planetary materials under high-pressure and high-temperature conditions;

2. Cycling of water and carbon in the Earth's deep interior;

3. Internal composition, structure, dynamics, and evolution of Earth and other terrestrial planets;

4. Application of high-pressure and synchrotron techniques to Earth, planetary, and materials sciences.


Publications

32. Xu, M., Z. Jing, Y.J. Ryu, J. Chantel, J.A. Van Orman, T. Yu, and Y. Wang, 2023. Temperature-induced densification in compressed basaltic glass revealed by in-situ ultrasonic measurements, Am. Mineral., https://doi.org/10.2138/am-2022-8694.

31. Wang, X., J. Zhang, A. Tommasi, M.A. Lopez-Sanchez, Z. Jing, F. Shi, W. Liu, F. Barou, 2023. Experimental evidence for a weak calcic-amphibole-rich deep crust in orogens. Geophys. Res. Lett., doi:  https://doi.org/10.1029/2022GL102320.

30. Perrillat, J-P., B. Tauzin, J. Chantel, J. Jonfal, I. Daniel, Z. Jing, Y. Wang, 2022. Shear wave velocities across the olivine – wadsleyite – ringwoodite transitions and sharpness of the 410 km seismic discontinuity. Earth Planet. Sci. Lett., doi: 10.1016/j.epsl.2022.117690.

29. Xu, M., Z. Jing, J.A. Van Orman, T. Yu, Y. Wang, 2022. Experimental Evidence Supporting an Overturned Iron-Titanium-Rich Melt Layer in the Deep Lunar Interior. Geophys. Res. Lett., doi: 10.1029/2022GL099066.

28. Xu, M., Z. Jing, T. Yu, E.E. Alp, B. Lavina, J.A. Van Orman, Y. Wang, 2022. Sound velocity and compressibility of melts along the hedenbergite (CaFeSi2O6)-diopside (CaMgSi2O6) join at high pressure: Implications for stability and seismic signature of Fe-rich melts in the mantle. Earth Planet. Sci. Lett., doi: 10.1016/j.epsl.2021.117250.

27. Wang, X., J. Zhang, A. Tommasi, Z. Jing, M. Yuan, 2021. Microstructure and seismic properties of amphibole-rich rocks from the deep crust in southern Tibet. Tectonophysics, doi:10.1016/j.tecto.2021.228869.

26. Zhu, F., X. Lai, J. Wang, G. Amulele, Y. Kono, G. Shen, Z. Jing, M.H. Manghnani, Q. Williams, B. Chen, 2021. Density of Fe‐Ni‐C liquids at high pressures and implications for liquid cores of Earth and the Moon. J. Geophys. Res.: Solid Earth, doi:10.1029/2020JB021089.

25. Xu, M., Z. Jing, S.K. Bajgain, M. Mookherjee, J.A. Van Orman, T. Yu, Y. Wang, 2020. High-pressure elastic properties of dolomite melt supporting carbonate-induced melting in deep upper mantle. Proc. Natl. Acad. Sci. U.S.A., doi:10.1073/pnas.2004347117.

24. Xu, M., Z. Jing, J.A. Van Orman, T. Yu, Y. Wang, 2020. Density of NaAlSi2O6 Melt at High Pressure and Temperature Measured by In-Situ X-ray Microtomography. Minerals, 10, 161, doi: 10.3390/min10020161.

23. Jing, Z., T. Yu, M. Xu, J. Chantel, Y. Wang, 2020. High-Pressure Sound Velocity Measurements of Liquids Using In Situ Ultrasonic Techniques in a Multianvil Apparatus. Minerals, 10, 126, doi: 10.3390/min10020126.

22. Bajgain, S.K., Y. Peng, M. Mookherjee, Z. Jing, M. Solomon, 2019. Properties of hydrous aluminosilicate melts at high pressures. ACS Earth Space Chem., 3, 390-402, doi: 10.1021/acsearthspacechem.8b00157.
21. Xu, M., Z. Jing, J. Chantel, P. Jiang, T. Yu, Y. Wang, 2018. Ultrasonic velocity of diopside liquid at high pressure and temperature: Constraints on velocity reduction in the upper mantle due to partial melts. J. Geophys. Res.: Solid Earth, doi: 10.1029/2018JB016187.
20. Chantel, J., Z. Jing, M. Xu, T. Yu, Y. Wang, 2018. Pressure dependence of the liquidus and solidus temperatures in the Fe-P binary system determined by in-situ ultrasonics: Implications to the solidification of Fe-P liquids in planetary cores. J. Geophys. Res.: Planets, 123, 1113-1124, doi:10.1029/2017JE005376.
19. Gréaux, S., Y. Kono, Y. Wang, A. Yamada, C. Zhou, Z. Jing, T. Inoue, Y. Higo, T. Irifune, N. Sakamoto, H. Yurimoto, 2016. Sound velocities of aluminum‐bearing stishovite in the mantle transition zone. Geophys. Res. Lett., 43, 4239-4246, doi:10.1002/2016GL068377.
18. Chantel, J., G. Manthilake, D. Frost, C. Beyer, Z. Jing, Y. Wang, T.B. Ballaran, 2016. Elastic wave velocities in polycrystalline Mg3Al2Si3O12-pyrope garnet to 24 GPa and 1300K. Am. Mineral., 101, 991-997.
17. Jing, Z., Y. Wang, Y. Kono, T. Yu, T. Sakamaki, C. Park, M.L. Rivers, S.R. Sutton, G. Shen, 2014. Sound velocity of Fe-S liquids at high pressure: Implications for the Moon’s molten outer core. Earth Planet. Sci. Lett., 396, 78-87.
16. Sakamaki, T., Y. Kono, Y. Wang, C. Park, T. Yu, Z. Jing, G. Shen, 2014. Contrasting sound velocity and intermediate-range structural order between polymerized and depolymerized silicate glasses under pressure. Earth Planet. Sci. Lett., 391, 288-295.
15. Wang, Y., T. Sakamaki, L.B. Skinner, Z. Jing, T. Yu, Y. Kono, C. Park, G. Shen, M.L. Rivers, S.R. Sutton, 2014. Atomistic insight into viscosity and density of silicate melts under pressure. Nature Communications, 5, 3241, doi:10.1038/ncomms4241.
14. Hustoft, J., G. Amulele, J. Ando, K. Otsuka, Z. Du, Z. Jing, S. Karato, 2013. Plastic deformation experiments to high strain on mantle transition zone minerals wadsleyite and ringwoodite in the rotational Drickamer apparatus. Earth Planet. Sci. Lett., 361, 7-15.
13. Chantel, J., D. Frost, C.A. McCammon, Z. Jing, Y. Wang, 2012. Acoustic velocities of pure and iron-bearing magnesium silicate perovskite measured to 25 GPa and 1200K. Geophys. Res. Lett., 39, L19307, doi:10.1029/2012GL053075.
12. Jing, Z., S. Karato, 2012. Effect of H2O on the density of silicate melts at high pressure: Static experiments and the application of a new equation of state. Geochim. Cosmochim. Acta., 85, 357-372.
11. Jing, Z., S. Karato, 2011. A new approach to the equation of state of silicate melts: An application of the theory of hard sphere mixtures. Geochim. Cosmochim. Acta., 75, 6780-6802.
10. Kawazoe, T., S. Karato, J. Ando, Z. Jing, K. Otsuka, and J.W. Hustoft, 2010. Shear deformation of polycrystalline wadsleyite up to 2100 K at 14-17 GPa using a rotational Drickamer apparatus (RDA). J. Geophys. Res., 115, B08208, doi: 10.1029/2009JB007096.
9. Jing, Z., S. Karato, 2009. The density of volatile bearing melts in the Earth’s deep mantle: the role of chemical composition. Chemical Geology. 262: 100-107.
8. Kawazoe, T., S. Karato, K. Otsuka, Z. Jing, and M. Mookherjee, 2009. Shear deformation of dry polycrystalline olivine under deep upper mantle conditions using a rotational Drickamer apparatus (RDA). Phys. Earth Planet. Inter. 174: 128-137.
7. Jing, Z., S. Karato, 2008. Compositional effect on the pressure derivatives of bulk modulus of silicate melts. Earth Planet. Sci. Letters, 272: 429-436.
6. Nishihara, Y., D. Tinker, Y. Xu, Z. Jing, K.N. Matsukage, S. Karato, 2008. Plastic deformation of wadsleyite and olivine at high-pressure and high-temperature using a rotational Drickamer apparatus (RDA). Phys. Earth Planet. Inter., 170: 156-169.
5. Karato, S., D. Bercovici, G.M. Leahy, G. Richard, and Z. Jing, 2006. Transition zone water-filter model for global material circulation: Where do we stand?, in Earth’s Deep Water Cycle, AGU Monograph Series, 168, edited by S.D. Jacobsen and S. van der Lee. pp. 289-313.
4. Matsukage, K. N., Z. Jing, S. Karato, 2005. Density of hydrous silicate melt at the conditions of Earth's deep upper mantle. Nature, 438: 488-491.
3. Jing, Z., J. Ning, S. Wang, S. Zang, 2002. Dynamic phase boundaries of olivine wadsleyite in subduction zones in the western Pacific. Geophys. Res. Lett., 29 (22): 2045, doi:10.1029/2001GL013810.
2. Zang, S., J. Ning, Z. Jing, 2001. Study on the rheology of subducting slabs. Science in China Series D: Earth Sciences, 44 (12): 1119-1127.
1. Jing, Z., J. Ning, 2001. A coupled computational scheme on thermal and phase structures of subducting slabs. Chinese Phys. Lett., 18 (10): 1297-1300.