Faculty
Dr. Yuqiang Zeng joined the School of Microelectronics at Southern University of Science and Technology in June 2023. He received a B.S. in Thermal Energy and Power Engineering from Huazhong University of Science and Technology in 2013, and a PhD in Mechanical Engineering at Purdue University in 2018. His dissertation focused on tuning thermal transport in thin films. He then worked as a postdoctoral associate at Lawrence Berkeley National Laboratory, before joining the faculty at SUSTech. His research focuses on thermal management of microelectronics, thermal solution for energy storage devices, micro/nanoscale thermal sensing & imaging, and electronics packaging and heterogeneous integration.
Dr. Zeng’s group has openings for Postdoctoral Fellows, Research Assistants, Graduate Students, and Internships. Prospective students are welcome to contact Dr. Zeng with a copy of his/her CV.
Contact:zengyq@sustech.edu.cn
Education
2013-2018, Ph.D., Purdue University
2009-2013, B.S., Huazhong University of Science and Technology
Employment
2023.6 – Present, Assistant Professor, Southern University of Science and Technology
2018.12 – 2023.5, Postdoc, Lawrence Berkeley National Laboratory
Awards
Travel Grants,Purdue University,2018
Graduate School Summer Research Grants,Purdue University,2018
Research Interest
Thermal management of microelectronics
Smart Battery Thermal Management
Micro/Nanoscale Thermal Sensing
Electronics Packaging and Heterogeneous Integration
Selected Publications
[1] Z. Liu*, Y. Zeng*, J. Tan*, H. Wang*, Y. Zhu, X. Geng, P. Guttmann, X. Hou, Y. Yang, Y. Xu, P. Cloetens, D. Zhou, Y. Wei, J. Lu, J. Li, B. Liu, M. Winter, R. Kostecki, Y. Lin, X. He, Revealing the degradation pathways of layered Li-rich oxide cathodes, Nat. Nanotechnology, 1-10 (2024).
[2] Y. Zeng, B. Zhang, Y. Fu, F. Shen, Q. Zheng, D. Chalise, R. Miao, S. Kaur, S. D. Lubner, M. C. Tucker, V. Battaglia, C. Dames, and R. S. Prasher, Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches, Nat. Commun. 14 (1), 3329 (2023).
[3] Y. Zeng, B. Zhang, Y. Fu, F. Shen, Q. Zheng, D. Chalise, R. Miao, S. Kaur, S. D. Lubner, M. C. Tucker, V. Battaglia, C. Dames, and R. S. Prasher, Extreme fast charging of commercial Li-ion batteries via combined thermal switching and self-heating approaches, Nat. Commun. 14 (1), 3329 (2023).
[4] Y. Zeng, D. Chalise, Y. Fu, J. Schaadt, S. Kaur, V. Battaglia, S. D. Lubner, and R. S. Prasher, Operando Spatial Mapping of Lithium Concentration Using Thermal-Wave Sensing, Joule 5, 2195 (2021). (Free Featured Article; Spotlighted in Trends in Chemistry)
[5] Y. Zeng, D. Chalise, S. D. Lubner, S. Kaur, and R. S. Prasher, A Review of Thermal Physics and Management inside Lithium-Ion Batteries for High Energy Density and Fast Charging, Energy Storage Mater. 41, 264 (2021).
[6] Y. Zeng, C.-L. Lo, S. Zhang, Z. Chen, and A. Marconnet, Dynamically Tunable Thermal Transport in Polycrystalline Graphene by Strain Engineering, Carbon 158, 63 (2020).
[7] Y. Zeng, T. Li, Y. Yao, T. Li, L. Hu, and A. Marconnet, Thermally Conductive Reduced Graphene Oxide Thin Films for Extreme Temperature Sensors, Adv. Funct. Mater. 29, 1901388 (2019).
[8] Y. Zeng and A. Marconnet, Reevaluating the Suppression Function for Phonon Transport in Nanostructures by Monte Carlo Techniques, J. Appl. Phys. 125, 034301 (2019).
[9] L. Yang, D. Huh, R. Ning, V. Rapp, Y. Zeng, Y. Liu, S. Ju, Y. Tao, Y. Jiang, J. Beak, J. Leem, S. Kaur, H. Lee, X. Zheng, R. S Prasher, High thermoelectric figure of merit of porous Si nanowires from 300 to 700 K, Nat. Commun. 12 (1), 3926 (2021).
[10] T. Li, A. D. Pickel, Y. Yao, Y. Chen, Y. Zeng, S. D. Lacey, Y. Li, Y. Wang, J. Dai, Y. Wang, B. Yang, M. S. Fuhrer, A. Marconnet, C. Dames, D. H. Drew, and L. Hu, Thermoelectric Properties and Performance of Flexible Reduced Graphene Oxide Films up to 3,000 K, Nat. Energy 3, 148 (2018).