师资
2014年毕业于日本名古屋大学微纳系统工程系,获得博士学位。师从微纳米机器人及自动化领域的国际知名学者福田敏男教授。2014-2018 年在瑞士苏黎世联邦理工学院机械过程工程系(多尺度机器人实验室)从事博士后研究,合作导师为Bradley Nelson 教授。研究内容面向基础生物学和生物医学工程应用,紧密结合机器人与微/纳机电系统(MEMS/NEMS)技术,致力于微纳米机器人制备工艺、微流控(microfluidics)器件与系统集成及新型微纳传感器等方向的创新型研究。在利用微纳米机器人、微流体芯片、微纳米操控及生物微机电系统(BioMEMS)等前沿技术制备组织工程支架及单细胞分析与检测做出多项国际先导性工作。发表国际期刊论文40余篇。包括Adv. Mater., Small, ACS Nano, Lab Chip, Biofabrication, Electrochem. Commun.等。发表国际会议论文30篇,包括ICRA, IROS, EMBC等,授权发明专利4项,参与撰写英文学术专著1部,作为项目负责人承担科研项目11项,参与科研项目7项。J. of Robotics, J. of Healthcare Eng.期刊客座编辑,Micromachines客座编辑,Cyborg and bionic systems 编委。
研究领域:
◆ 光驱、磁驱微纳机器人及其生物应用
◆ 微流控芯片及其单细胞分析应用
◆ 磁控医疗机器人
工作经历:
◆ 2021.01 – 至 今: 南方科技大学,副教授
◆ 2018.06 – 2020.12 : 南方科技大学,助理教授
◆ 2014.05 – 2018.06 : 瑞士苏黎世联邦理工学院,博后研究员
◆ 2015.02 – 2018.06 : MPI & ETH联合学习系统中心,副研究员
◆ 2011.03 – 2012.03 : 名古屋大学GCOE研究助理
教育经历:
◆ 2010.10 – 2014.04:日本名古屋大学, 微纳系统工学, 博士
◆ 2008.09 – 2010.07:华中科技大学,机械制造及其自动化, 硕士
◆ 2004.09 – 2008.07:华中科技大学,测控技术与仪器(精密仪器), 学士
所获荣誉:
◆ 2021年国家重大人才工程(引进类)(青年项目)获得者
◆ 2020年深圳市海外高层次人才B类
◆ 2015年在国际顶级机器人会议ICRA上获得可移动微米机器人组装挑战赛冠军
◆ 2012 MHS最佳论文奖
◆ 2011年获名古屋大学学术奖励赏
主持项目:
◆国家自然科学基金,面上项目,微纳机器人仿体内封闭环境下高效集群控制研究,50万,2024.01-2027.12,主持
◆国家科技部重点研发专项,青年项目,肿瘤细胞内精准取样与原位检测自动化系统的研发与应用,200万,2024.01-2026.12,主持
◆国家自然科学基金委员会,青年项目,6190317,面向靶向治疗的光磁混合驱动微纳机器人多模式选择性运动控制,28万,2020.01-2022.12,主持
◆深圳市科技创新委员会,基础研究面上项目,20205214,面向眼后段药物靶向递送的微纳机器人技术研究,40万,2020.04-2022.05,主持
◆深圳市科创委-稳定支持(面上),面向靶向治疗的复合场操控微纳米机器人设计与集群化协同控制技术,50万,2022.10-2024.09,主持
◆南科大与深圳资福医疗联合实验室,磁控胶囊内窥镜驱动及其定位技术,500万,2020.06-2025.06,主持
◆广东省自然科学基金面上项目,微纳机器人与组织细胞的生/机表界面特性研究,10万,2021-2023,主持
◆中央*******科技项目管理中心,地下************微小型机器人,2021-2022,主持
◆北京起橙科技有限公司,一种微针贴片制备技术的开发研究,10万,2021.11-2022.04,主持
◆无锡美安雷克斯医疗机器人有限公司,外骨骼机器人运动平衡算法,50万,2022.11-2024.11,主持
◆美安创新医疗科技无锡有限公司,胃蛋白酶检测试剂盒的开发,50万,2022.10-2024.10,主持
代表文章:
1. J Hao, J Duan, K Wang, C Hu, C Shi. Inverse Kinematic Modeling of the Tendon-Actuated Medical Continuum Manipulator Based on a Lightweight Timing Input Neural Network. IEEE Transactions on Medical Robotics and Bionics, 2023.
2. H Jiang, X He, M Yang, C Hu. Visible Light-Driven Micromotors in Fuel-Free Environment with Promoted Ion Tolerance. Nanomaterials, 2023, 13(12): 1827.
3. Y Li, Z Huang, X Liu, J Jie, C Song, C Hu. Calibrated analytical model for magnetic localization of wireless capsule endoscope based on onboard sensing. Robotica, 2023, 41(5): 1500-1514.
4. Z Liu, H Nan, Y S Chiou, Z Zhan, P E Lobie, C Hu. Selective Formation of Osteogenic and Vasculogenic Tissues for Cartilage Regeneration. Advanced Healthcare Materials, 2023, 12(5): 2202008.
5. Z Liu, H Nan, Y Jiang, T Xu, X Gong, C Hu. Programmable Electrodeposition of Janus Alginate/Poly-L-Lysine/Alginate (APA) Microcapsules for High-Resolution Cell Patterning and Compartmentalization. Small, 2022, 18(10): 2106363.
6. Z Zhan, Z Liu, H Nan, J Li, Yuan X, C Hu. Heterogeneous spheroids with tunable interior morphologies by droplet-based microfluidics. Biofabrication, 2022, 14(2): 025024.
7. B Fu, J Li, H Jiang, X He, Y Ma, J Wang, C Hu. Modulation of electric dipoles inside electrospun BaTiO3@ TiO2 core-shell nanofibers for enhanced piezo-photocatalytic degradation of organic pollutants. Nano Energy, 2022, 93: 106841.
8. B Fu, J Li, H Jiang, X He, Y Ma, J Wang, C Shi, C Hu. Enhanced piezotronics by single-crystalline ferroelectrics for uniformly strengthening the piezo-photocatalysis of electrospun BaTiO3@ TiO2 nanofibers. Nanoscale, 2022, 14(38): 14073-14081.
9. W Hu, Y Ma, Z Zhan, D Hussain, C Hu. Robotic intracellular electrochemical sensing for adherent cells. Cyborg and Bionic Systems, 2022.
10. Y Xing, D Hussain, C Hu. Optimized dynamic motion performance for a 5-dof electromagnetic manipulation. IEEE Robotics and Automation Letters, 2022, 7(4): 8604-8610.
11. J Li, X He, H Jiang, Y Xing, B Fu, C Hu. Enhanced and robust directional propulsion of light-activated janus micromotors by magnetic spinning and the magnus effect. ACS Applied Materials & Interfaces, 2022, 14(31): 36027-36037.
12. H Jiang, X He, Y Ma, B Fu, X Xu, B Subramanian, C Hu. Isotropic hedgehog-shaped-TiO2 /functional -multiwall-carbon-nanotube micromotors with phototactic motility in fuel-free environments. ACS Applied Materials & Interfaces, 2021, 13(4): 5406-5417.
13. Z Liu, H Zhang, Z Zhan, H Nan, N Huang, T Xu, X Gong, C Hu. Mild formation of core–shell hydrogel microcapsules for cell encapsulation. Biofabrication, 2021, 13(2): 025002.
14. X He, H Jiang, J Li, Y Ma, B Fu, C Hu. Dipole-moment induced phototaxis and fuel-free propulsion of ZnO/Pt Janus micromotors. Small, 2021, 17(31): 2101388.
15. D Xu, W Hu, Y Jia, C Hu. An Immersed Boundary-Lattice Boltzmann Method for Hydrodynamic Propulsion of Helical Microrobots at Low Reynolds Numbers. IEEE Robotics and Automation Letters, 2021, 7(2): 1048-1054.
16. Z Liu, H Zhang,Z Zhan, H Nan, N Huang, T Xu, X Gong, C Hu. Mild formation of core–shell hydrogel microcapsules for cell encapsulation. Biofabrication, 2021, 13(2): 025002.
17. Subramanian, B.; Veerappan, M.; Rajan, K.; Chen, Z.; C. Hu; Wang, F.; Wang, F.; Yang, M. Fabrication of Hierarchical Indium Vanadate Materials for Supercapacitor Application. Global Challenges 2020, 4.
18. X. Wang, C. Hu, L. Schurz, C. De Marco, X. Z. Chen, S. Pane and B. J. Nelson. "Surface-Chemistry-Mediated Control of Individual Magnetic Helical Microswimmers in a Swarm." Acs Nano 12(6): 6210-6217. 2018. Corresponding author.
19. C. Hu, S. Pane, and B.J. Nelson, “Soft micro and nano robotics“, Annual Review of Control, Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 53-75, 2018.
20. C. Hu, F. Aeschlimann, G. Chatzipirpirdis, J. Pokki, X. Chen, J. Puigmarti-Luisb, B. J. Nelson, S. Pané, “Spatiotemporally Controlled Electrodeposition of Magnetically Driven Micromachines Based on the Inverse Opal Architecture”, Electrochemistry Communications, Vol. 81, pp. 97–101, 2017.
21. C. Hu, G. Munglani, H. Vogler, T. Ndinyanka Fabrice, N. Shamsudhin, F. K. Wittel, C. Ringli, U. Grossniklaus, H. J. Herrmann, and B. J. Nelson, "Characterization of size-dependent mechanical properties of tip-growing cells using a lab-on-chip device," Lab on a Chip, vol. 17, pp. 82-90, 2017. Front Outside Cover
22. C, Hu, H. Vogler, M. Aellen, N. Shamsudhin, B. Jang, U. Grossniklaus and B. J. Nelson, "High precision, localized proton gradients and fluxes generated by a microelectrode device induce differential growth behaviors of pollen tubes," Lab on a Chip, vol. 17, pp. 671-680, 2017.
23. C. Hu, Q. Shi, L. Liu, U. Wejinya, Y. Hasegawa, Y. Shen,"Robotics in Biomedical and Healthcare Engineering", Journal of Healthcare Engineering, 2017: 1610372,2017.
24. C. Hu, M. Nakajima, T. Yue, M. Takeuchi, M. Seki, Q. Huang and T. Fukuda, "On-chip Fabrication of Magnetic Alginate Hydrogel Microfibers by Multi-Layered Pneumatic Microvalves" Microfluidics and Nanofluidics, vol. 17, pp. 457-468, 2014.
25. C. Hu, C. Tercero, S. Ikeda, M. Nakajima, H. Tajima, Y. Shen, T. Fukuda, and F. Arai, "Biodegradable Porous Sheet-like Scaffolds for Soft-Tissue Engineering using a Combined Particulate Leaching of Salt Particles and Magnetic Sugar Particles, " Journal of Bioscience and Bioengineering, vol. 116, pp. 126-131, 2013.
26. C. Hu, T. Uchida, C. Tercero, S. Ikeda, K. Ooe, T. Fukuda, F. Arai, M. Negoro, and G. Kwon, "Development of biodegradable scaffolds based on magnetically guided assembly of magnetic sugar particles," Journal of Biotechnology, vol. 159, pp. 90-98, 2012.
27. M. Gao, C. Hu, Z. Chen, H. Zhang, and S. Liu, "Design and Fabrication of a Magnetic Propulsion System for Self-propelled Capsule Endoscope," IEEE Transactions on Biomedical Engineering, vol. 57, pp. 2891-2902, 2010. Co-first author. Front Cover.
28. Z. Yang, C. Y. Gu, T. Chen, C. Hu, and L. N. Sun, "Kink and Delta Self-Actuating Platinum Micro-Robot," Ieee Transactions on Nanotechnology, vol. 17, no. 3, pp. 603-606, 2018. Corresponding author.
29. N. Shamsudhin, N. Laeubli, H.B. Atakan, H. Vogler, C. Hu, W. Haeberle, A. Sebastian, U. Grossniklaus and B.J. Nelson, "Massively parallelized pollen tube guidance and mechanical measurements on a Lab-on-a-Chip platform," PLoS ONE, 11(12): e0168138. 2016. Corresponding author.
30. X.-Z. Chen, J.-H. Liu, M. Dong, L. Müller, G. Chatzipirpiridis, C. Hu, A. Terzopoulou, H. Torlakcik, X. Wang, F. Mushtaq, J. Puigmartí-Luis, Q.-D. Shen, B. J. Nelson, and S. Pané, "Magnetically driven piezoelectric soft microswimmers for neuron-like cell delivery and neuronal differentiation," Materials Horizons, 10.1039/C9MH00279K 2019.
31. X. Wang, X.-Z. Chen, C. C. J. Alcântara, S. Sevim, M. Hoop, A. Terzopoulou, C. de Marco, C. Hu, A. J. de Mello, P. Falcaro, S. Furukawa, B. J. Nelson, J. Puigmartí-Luis, and S. Pané, "MOFBOTS: Metal–Organic-Framework-Based Biomedical Microrobots," Advanced Materials, vol. 0, no. 0, p. 1901592. 2019.
32. J. T. Burri, H. Vogler, N. F. Laubli, C. Hu, U. Grossniklaus, and B. J. Nelson, "Feeling the force: how pollen tubes deal with obstacles," New Phytologist, vol. 220, no. 1, pp. 187-195, 2018.
33. X. Wang, X.-H. Qin, C. Hu, A. Terzopoulou, X.-Z. Chen, T.-Y. Huang, K. Maniura-Weber, S. Pané and B. J. Nelson. "3D Printed Enzymatically Biodegradable Soft Helical Microswimmers." Advanced Functional Materials 28(45): 1804107. 2018.
34. X. Chen, B. Jang, D. Ahmed, C. Hu, C. De Marco, M. Hoop, F. Mushtaq, B. J. Nelson, S. Pane, “Small-scale machines driven by external power sources,” Advanced Materials, 2018.
35. T. Sun, Q. Shi, Q. Huang, H. Wang, X. Xiong, C. Hu, and T. Fukuda, "Magnetic alginate microfibers as scaffolding elements for the fabrication of microvascular-like structures," Acta Biomaterialia. doi.org/10.1016/j.actbio.2017.11.038, 2017.
36. XZ Chen, M Hoop, F Mushtaq, E Siringil, C Hu, BJ Nelson, S Pané, "Recent developments in magnetically driven micro-and nanorobots," Applied Materials Today, vol. 9, pp. 37-48, 2017.
37. W Shang, Y Liu, W Wan, C. Hu, Z Liu, CT Wong, T Fukuda, Y Shen, “Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation,” Biofabrication, vol. 9, p. 025032, 2017.
38. B. J. Jang, W. Wang, S. Wiget, A. J. Petruska, X. Z. Chen, C. Hu, A. Y. Hong, D. Folio, A. Ferreira, S. Pane, and B. J. Nelson, "Catalytic Locomotion of Core-Shell Nanowire Motors," Acs Nano, vol. 10, pp. 9983-9991, Nov 2016.
39. Z. Liu, M. Takeuchi, M. Nakajima, C. Hu, Y. Hasegawa, Q. Huang, et al., "Three-dimensional hepatic lobule-like tissue constructs using cell-microcapsule technology," Acta Biomaterialia, vol. 50, pp. 178-187, 2016.
40. T. Sun, Q. Huang, Q. Shi, H. P. Wang, C. Hu, P. Y. Li, M. Nakajima, and T. Fukuda, "Assembly of alginate microfibers to form a helical structure using micromanipulation with a magnetic field," Journal of Micromechanics and Microengineering, vol. 26, 105017, Oct 2016.
41. T. Sun, C. Hu, M. Nakajima, M. Takeuchi, M. Seki, T. Yue, Q. Shi, T. Fukuda, and Q. Huang, "On-chip fabrication and magnetic force estimation of peapod-like hybrid microfibers using a microfluidic device," Microfluidics and Nanofluidics, vol. 18, pp. 1177-1187, May 2015.
42. T. Yue, M. Nakajima, M. Takeuchi, C. Hu, Q. Huang, and T. Fukuda, "On-chip self-assembly of cell embedded microstructures to vascular-like microtubes," Lab on a Chip, vol. 14, pp. 1151-1161, 2014.
43. A. Bakar, M. Nakajima, C. Hu, H. Tajima, S. Maruyama, and T. Fukuda, " Fabrication of 3D Photoresist Structure for Artificial Capillary Blood Vessel", Journal of Robotics and Mechatronics, Vol.25, No.4, pp. 673-681, 2013
44. M. Gao, C. Hu, Z. Chen, S. Liu, and H. Zhang, "Finite-Difference Modeling of Micromachine for Use in Gastrointestinal Endoscopy," IEEE Transactions on Biomedical Engineering, vol. 56, pp. 2413-2419, 2009.
45. H Nan, Z Liu, C. Hu, Electrosynthesis of Janus Alginate Hydrogel Microcapsules with Programmable Shapes for Cell Encapsulation, 2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO), 412-416
46. Niu, J.; Liu, Z.; Zhang, H.; C. Hu.; Ieee, Electrodeposition of Magnetic Alginate-poly-L-lysine Microcapsules for Targeted Drug Delivery. In 2019 14th Annual Ieee International Conference on Nano/Micro Engineered and Molecular Systems, 2019; pp 403-408.
47. Zhang, H.; Liu, Z.; Nan, H.; C. Hu.; Ieee, Development of Retina Cell-laden Alginate Microbeads for Study of Glaucoma. In 2019 14th Annual Ieee International Conference on Nano/Micro Engineered and Molecular Systems, 2019; pp 143-148.
其他内容 :
◆ 本课题组已建成微纳操控实验室和化学合成实验室,生物实验室。南方科技大学分析检测中心提供各种先进微纳加工检测设备。硬件条件较好。
◆ 长期招收博士后,研究助理,联合培养博士以及硕士研究生,待遇优厚。同时欢迎海内外学者、学生访问。
◆ 办公室地址:中国广东省深圳市南山区学苑大道1088号工学院北楼518