师资
个人简介
李才恒, 讲席教授。研究领域包括代数组合数学和置换群论。1997年毕业于西澳大利亚大学,获博士学位。1998年国际组合数学及其应用协会Kirkman奖章。曾任澳大利亚国家伊莉莎白二世研究员,美国Ohio州立大学终身教职,南开大学讲席教授(兼职),云南大学特聘教授(兼职),北京大学讲席教授,和西澳大学讲座教授。
他在置换群论和代数图论方向做出了开创性的贡献,是国际学术带头人。先后解决了多个世界著名的重要问题,包括关于包含交换正则子群的本原置换群的100年老的Burnside问题。
代表文章
◆ Finite CI-groups are solvable, Bull. London Math. Soc. 31 (1999), 419-423.
◆ The finite vertex-primitive and vertex-biprimitive s-transitive graphs with s>3, Trans. Amer. Math. Soc. 353(2001), 3511-3529.
◆ On partitioning the orbitals of a transitivie permutation groups, Trans. Amer. Math. Soc. 355 (2003), 637-653.
◆ The finite primitive permutation groups containing an abelian regular subgroup, Proc. London Math. Soc. 87 (2003), 725-748.
◆ Analysing finite locally s-arc transitive graphs, Trans. Amer. Math. Soc. 356 (2004), 291-317. (with M. Giudici and C. E. Praeger).
◆ On orbital partitions and exceptionality of primitive permutation groups, Trans. Amer. Math. Soc. 356 (2004), 4857-4872 (with R. Guralnick, C.E. Praeger and J. Saxl).
◆ Finite edge-transitive Cayley graphs and rotary Cayley maps, Trans. Amer. Math. Soc. 358 (2006), 4605-4635.
◆ Mobius regular maps, J. Combin. Theory Ser. B, 97(2007), 57-73.
◆ Finite edge primitive graphs, J. Combin. Theory Ser. B 100 (2010), 275-298. (with M. Giudici).
◆ Finite primitive permutation groups with soluble stabilisers and edge-primitive 4-arc transitive graphs, Proc. London Math. Soc. (3) 103 (2011), 441-472 (with Hua Zhang).