师资
陶丽芝,南方科技大学化学系副教授、博士生导师、课题组长。2011年于清华大学化学系获硕士学位 (导师:徐柏庆教授),研究方向为固体酸碱多相催化化学。之后前往美国加州大学戴维斯分校 (University of California, Davis) 全球著名电子顺磁共振光谱 (Electron Paramagnetic Resonance, EPR) 实验室攻读博士学位 (导师:R. David Britt 教授; William H. Casey 教授) ,研究方向为运用电子顺磁共振光谱研究多铜氧化酶催化反应的分子机制。2016年获得博士学位后留校从事博士后研究工作,将研究拓展至多种纷繁复杂的化学以及生物化学体系当中;运用电子顺磁共振光谱EPR对这些体系中的关键顺磁物种进行三维结构鉴定和解析,获得了原子、分子层面上反应机理及构效关系的认识和理解。迄今为止,在领域内顶级国际学术刊物 (J. Am. Chem. Soc., Nature Chem., Nature Rev. Chem.等) 发表论文50余篇。2021年入选海外高层次人才计划青年项目,2022年7月加入南方科技大学化学系。
研究方向:
1. 先进电子顺磁共振光谱Advanced Electron Paramagnetic Resonance, EPR;
2. 金属蛋白酶催化反应机理研究;
3. 金属有机、表面多相催化化学反应分子机制。
发表论文:
[53] B. Ma, Y.-H. Lee, M. W. Ruszczycky, D. Ren, A. Engstrom, H.-w. Liu*, and L. Tao*, “EPR characterization of the BlsE substrate radical offers insight into the determinants of reaction outcome that distinguish radical SAM dioldehydratases from dehydrogenases”, J. Am. Chem. Soc., 2025, 147, 4111-4119.
[52] B. Ma, R. D. Britt, and L. Tao*, “Radical SAM enzyme PylB generates a lysyl radical intermediate in the biosynthesis of pyrrolysine by using SAM as a cofactor”, J. Am. Chem. Soc., 2024, 146, 6544-6556.
[51] Y. Li, T. Yu, X. Feng, B. Zhao, H. Chen, H. Yang, X. Chen, X.-H. Zhang, H. R. Anderson, N. Z. Burns, F. Zeng*, L. Tao*, and Z. Zeng*, “Biosynthesis of GMGT lipids by a radical SAM enzyme associated with anaerobic archaea and oxygen-deficient environments”, Nat. Commun., 2024, 15, 5256.
[50] W. Fu, F. P. Hyler, J. Sanchez, T. F. Jaramillo, J. M. Velázquez, L. Tao*, and R. D. Britt*, “Biogenic manganese oxide synthesized by a marine bacterial multicopper oxidase MnxG reveals oxygen evolution activity,” ACS Catal., 2024, 14, 7232-7242.
[49] K. Han, H. Liu, M. E. Rotella, Z. Xu, L. Tao, S. Chen*, M. C. Kozlowski*, and T. Jia*, “A combined experimental and computational study of ligand-controlled Chan-Lam coupling of sulfenamides”, Nat. Commun., 2024, 15, 4747.
[48] D. Xu, M.-Y. Jin, Y. Chen, D. Han, L. Tao, and X. Xing*, “Indium-catalyzed reductive coupling enabled efficient synthesis of acylphosphine oxides and diphosphines”, ACS Catal., 2024, 14, 3241-3247.
[47] Y. Mei, X. Chen, R. Wei, X.-Y. Chang, L. Tao, and L. L. Liu*, “An isolable radical anion featuring a 2-center-3-electron π-bond without a clearly defined σ-bond”, Angew. Chem. Int. Ed., 2023, 62, e202315555.
[46] T. Xue, Y.-S. Ding, X.-L. Jiang, L. Tao, J. Li*, and Z. Zheng*, “Tetravalent terbium chelates: stability enhancement and property tuning”, Precis. Chem., 2023, 1, 583-591.
[45] D. G. Villarreal, G. Rao, L. Tao, L. Liu, T. B. Rauchfuss, and R. D. Britt*, “Characterizing the biosynthesis of the [Fe(II)(CN)(CO)2(cysteinate)]-organometallic product of the radical-SAM enzyme HydG by EPR and Mössbauer spectroscopy”, J. Phys. Chem. B, 2023, 127, 9295-9302.
[44] C. P. Delaney, E. Lin, Q. Huang, I. F. Yu, G. Rao, L. Tao, A. Jed, S. M. Fantasia, K. A. Püntener, R. D. Britt, and J. F. Hartwig*, “Cross-coupling by a noncanonical mechanism involving the addition of aryl halide to Cu(II)”, Science, 2023, 381, 1079-1085.
[43] A. Singha, A. Sekretareva, L. Tao, H. Lim, Y. Ha, A. Braun, S. M. Jones, B. Hedman, K. O. Hodgson, R. D. Britt, D. J. Kosman*, and E. I. Solomon*, “Tuning the type 1 reduction potential of multicopper oxidases: Uncoupling the effects of electrostatics and H-bonding to histidine ligands”, J. Am. Chem. Soc, 2023, 145, 13284-13301.
Prior to SUSTech
First, co-first and corresponding authored publications
[42] Y. Zhang#, L. Tao# (co-first author), T. Woods, R. D. Britt*, and T. B. Rauchfuss*, “Organometallic Fe2(μ-SH)2(CO)4(CN)2 cluster allows the biosynthesis of the [FeFe]-hydrogenase with only the HydF maturase”, J. Am. Chem. Soc., 2022, 144, 1534-1538.
[41] R. D. Britt*, G. Rao*, and L. Tao*, “Bioassembly of complex iron–sulfur enzymes: hydrogenases and nitrogenases”, Nat. Rev. Chem., 2020, 4, 542-549.
[40] L. Tao, S. A. Pattenaude, S. Joshi, T. P. Begley, T. B. Rauchfuss, and R. D. Britt*, “The radical SAM enzyme HydE generates adenosylated Fe(I) intermediates en route to the [FeFe]-hydrogenase catalytic H-cluster”, J. Am. Chem. Soc., 2020, 142, 10841-10848.
[39] L. Tao, W. Zhu, J. P. Klinman*, and R. D. Britt*, “Electron paramagnetic resonance spectroscopic identification of the Fe–S clusters in the SPASM domain-containing radical SAM enzyme PqqE”, Biochemistry, 2019, 58, 5173-5187.
[38] L. Tao, T. Y. Lai, P. P. Power*, and R. D. Britt*, “Germanium hydride radical trapped during the photolysis/thermolysis of diarylgermylene”, Inorg. Chem., 2019, 58, 15034-15038.
[37] L. Tao, T. A. Stich, C. J. Fugate, J. T. Jarrett, and R. D. Britt*, “EPR-derived structure of a paramagnetic intermediate generated by biotin synthase BioB”, J. Am. Chem. Soc., 2018, 140, 12947-12963.
[36] L. Tao#, A. N. Simonov#, C. A. Romano, C. N. Butterfield, B. M. Tebo, A. M. Bond, L. Spiccia*, L. L. Martin*, and W. H. Casey*, “Probing electron transfer in the manganese-oxide-forming MnxEFG protein complex using Fourier transformed AC voltammetry: understanding the oxidative priming effect”, ChemElectroChem., 2018, 5, 872-876.
[35] L. Tao, A. V. Soldatova, B. M. Tebo, T. G. Spiro, W. H. Casey, and R. D. Britt*, “Mn(III) species formed by the multi-copper oxidase MnxG investigated by electron paramagnetic resonance spectroscopy”, J. Biol. Inorg. Chem., 2018, 23, 1093-1104.
[34] L. Tao, T. A. Stich, S.-H. Liou, A. V. Soldatova, D. A. Delgadillo, C. A. Romano, T. G. Spiro, D. B. Goodin, B. M. Tebo, W. H. Casey, and R. D. Britt*, “Copper binding sites in the manganese-oxidizing Mnx protein complex investigated by electron paramagnetic resonance spectroscopy”, J. Am. Chem. Soc., 2017, 139, 8868-8877.
[33] L. Tao#, A. N. Simonov#, C. A. Romano, C. N. Butterfield, M. Fekete, B. M. Tebo, A. M. Bond, L. Spiccia*, L. L. Martin*, and W. H. Casey*, “Biogenic manganese-oxide mineralization enhanced by oxidative priming of the MnxEFG protein complex”, Chem. Eur. J, 2016, 23, 1346-1352.
[32] L. Tao, T. A. Stich, C. N. Butterfield, C. A. Romano, T. G. Spiro, B. M. Tebo, W. H. Casey, and R. D. Britt*, “Mn(II) binding and subsequent oxidation by the multicopper oxidase MnxG investigated by electron paramagnetic resonance spectroscopy”, J. Am. Chem. Soc., 2015, 137, 10563-10575.
[31] L. Tao, T. A. Stich, H. Jaccard, R. D. Britt, and W. H. Casey*, “Manganese-oxide solids as water-oxidation electrocatalysts: the effect of intercalating cations”, ACS Symp. Ser., 2015, 1197, 135-153.
[30] L. Tao, S.-H. Chai, P. Wang, Y. Liang, and B.-Q. Xu*, “Comparison of gas-phase dehydration of propane polyols over solid acid–base catalysts”, Catal. Today, 2014, 234, 237-244.
[29] L. Tao, B. Yan, Y. Liang, and B.-Q. Xu*, “Sustainable production of acrolein: catalytic performance of hydrated tantalum oxides for gas-phase dehydration of glycerol”, Green Chem., 2013, 15, 696-705.
[28] L. Tao, S.-H. Chai, Y. Zuo, W.-T. Zheng, Y. Liang, and B.-Q. Xu*, “Sustainable production of acrolein: acidic binary metal oxide catalysts for gas-phase dehydration of glycerol”, Catal. Today, 2010, 158, 310-316.
Coauthored publications
[27] A. R. Balo, L. Tao, and R. D. Britt*, “Characterizing SPASM/twitch domain-containing radical SAM enzymes by EPR spectroscopy”, Appl. Magn. Reson., 2022, 53, 809-820.
[26] T. J. Sherbow, W. Fu, L. Tao, L. N. Zakharov, R. D. Britt, and M. D. Pluth*, “Thionitrite (SNO−) and perthionitrite (SSNO−) are simple synthons for nitrosylated iron sulfur clusters”, Angew. Chem. Int. Ed., 2022, 61, e202204570.
[25] J. B. Patteson, A. T. Putz, L. Tao, W. C. Simke, L. H. Bryant III, R. D. Britt, and B. Li*, “Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa”, Science, 2021, 374, 1005-1009.
[24] R. D. Britt*, L. Tao, G. Rao, N. Chen, and L.-P. Wang, “Proposed mechanism for the biosynthesis of the [FeFe]-hydrogenase H-cluster: central roles for the radical SAM enzymes HydG and HydE”, ACS Bio. Med. Chem. Au, 2021, 2, 11-21.
[23] A. R. Balo, A. Caruso, L. Tao, D. J. Tantillo, M. R. Seyedsayamdost*, and R. D. Britt*, “Trapping a cross-linked lysine–tryptophan radical in the catalytic cycle of the radical SAM enzyme SuiB”, Proc. Natl. Acad. Sci. U.S.A., 2021, 118, e2101571118.
[22] R. Rohac, L. Martin, Liang Liu, D. Basu, L. Tao, R. D. Britt*, T. B. Rauchfuss*, and Y. Nicolet*, “Crystal structure of the [FeFe]-hydrogenase maturase HydE bound to complex-B”, J. Am. Chem. Soc., 2021, 143, 8499-8508.
[21] W. Zhu, L. M. Walker, L. Tao, A. T. Iavarone, X. Wei, R. D. Britt, S. J. Elliott*, and J. P. Klinman*, “Structural properties and catalytic implications of the SPASM domain iron–sulfur clusters in Methylorubrum extorquens PqqE”, J. Am. Chem. Soc., 2020, 142, 12620-12634.
[20] R. D. Britt*, G. Rao, and L. Tao, “Biosynthesis of the catalytic H-cluster of [FeFe] Hydrogenase: the roles of the Fe-S maturase proteins HydE, HydF, and HydG”, Chem. Sci., 2020, 11, 10313-10323.
[19] G. Rao, L. Tao, and R. D. Britt*, “Serine is the molecular source of the NH(CH2)2 bridgehead moiety of the in vitro assembled [FeFe] hydrogenase H-cluster”, Chem. Sci., 2020, 11, 1241-1247.
[18] K. M. Schilling, L. Tao, B. Wu, J. T. M. Kiblen, N. C. Ubilla-Rodriguez, M. J. Pushie, R. D. Britt, G. P. Roseman, D. A. Harris*, and G. L. Millhauser*, “Both N-terminal and C-terminal histidine residues of the prion protein are essential for copper coordination and neuroprotective self-regulation”, J. Mol. Biol., 2020, 432, 4408-4425.
[17] M. J. Stevenson, S. E. Janisse, L. Tao, R. L. Neil, Q. D. Pham, R. D. Britt, and M. C. Heffern*, “Elucidation of a copper binding site in proinsulin C-peptide and its implications for metal-modulated activity”, Inorg. Chem., 2020, 59, 9339-9349.
[16] F. Li, A. Thevenon, A. R.-Hernández, …, L. Tao, … R. D. Britt, D. Sinton, T. Agapie*, J. C. Peters*, E. H. Sargent*, et al., “Molecular tuning of CO2-to-ethylene conversion”, Nature, 2019, 577, 509-513.
[15] T. Y. Lai, L. Tao, R. D. Britt, and P. P. Power*, “Reversible Sn–Sn triple bond dissociation in a distannyne: support for charge-shift bonding character”, J. Am. Chem. Soc., 2019, 141, 12527-12530.
[14] C. L. Wagner, L. Tao, J. C. Fettinger, R. D. Britt, and P. P. Power*, “Two-coordinate, late first-row transition metal amido derivatives of the bulky ligand -N(SiPri3)Dipp (Dipp = 2,6-diisopropylphenyl): effects of the ligand on the stability of two-coordinate copper(II) complexes”, Inorg. Chem., 2019, 58, 8793-8799.
[13] G. Rao, A. B. Altman, A. C. Brown, L. Tao, T. A. Stich, J. Arnold*, and R. D. Britt*, “Metal bonding with 3d and 6d orbitals: an EPR and ENDOR spectroscopic investigation of Ti3+–Al and Th3+–Al heterobimetallic complexes”, Inorg. Chem., 2019, 58, 7978-7988.
[12] G. Rao, L. Tao, D. L. M. Suess, and R. D. Britt*, “A [4Fe–4S]-Fe(CO)(CN)-L-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly”, Nat. Chem., 2018, 10, 555-560.
[11] A. V. Soldatova, L. Tao, C. A. Romano, T. A. Stich, W. H. Casey, R. D. Britt, B. M. Tebo, and T. G. Spiro*, “Mn(II) oxidation by the multicopper oxidase complex Mnx: a binuclear activation mechanism”, J. Am. Chem. Soc., 2017, 139, 11369-11380.
[10] A. V. Soldatova, C. A. Romano, L. Tao, T. A. Stich, W. H. Casey, R. D. Britt, B. M. Tebo, and T. G. Spiro*, “Mn(II) oxidation by the multicopper oxidase complex Mnx: a coordinated two-stage Mn(II)/(III) and Mn(III)/(IV) mechanism”, J. Am. Chem. Soc., 2017, 139, 11381-11391.
[9] S. Wang, L. Tao, T. A. Stich, M. M. Olmstead, R. D. Britt, and P. P. Power*, “Insertion of a transient tin nitride into carbon–carbon and boron–carbon bonds”, Inorg. Chem., 2017, 56, 14596-14604.
[8] A. N. Simonov*, R. K. Hocking, L. Tao, T. Gengenbach, T. Williams, X.‐Y. Fang, H. J. King, S. A. Bonke, D. A. Hoogeveen, C. A. Romano, B. M. Tebo, L. L. Martin, W. H. Casey*, and L. Spiccia, “Tunable biogenic manganese oxides”, Chem. Eur. J, 2017, 23, 13482-13492.
[7] B. Yan, L. Tao, Y. Liang, and B.-Q. Xu*, “Potassium-ion-exchanged zeolites for sustainable production of acrylic acid by gas-phase dehydration of lactic acid”, ACS Catal., 2017, 7, 538-550.
[6] C. L. Wagner, L. Tao, E. J. Thompson, T. A. Stich, J. Guo, J. C. Fettinger, L. A. Berben, R. D. Britt, S. Nagase, and P. P. Power*, “Dispersion-force-assisted disproportionation: a stable two-coordinate copper(II) complex”, Angew. Chem. Int. Ed., 2016, 55, 10444-10447.
[5] C. N. Butterfield, L. Tao, K. N. Chacóna, T. G. Spiro, N. J. Blackburn, W. H. Casey, R. D. Britt, and B. M. Tebo*, “Multicopper manganese oxidase accessory proteins bind Cu and Heme”, Biochim. Biophys. Acta, 2015, 1854, 1853-1859.
[4] B. Yan, L. Tao, Y. Liang, and B.-Q. Xu*, “Sustainable production of acrylic acid: alkali-ion exchanged beta zeolite for gas-phase dehydration of lactic acid”, ChemSusChem, 2014, 7, 1568-1578.
[3] B. Yan, L. Tao, Y. Liang, and B.-Q. Xu*, “Sustainable production of acrylic acid: catalytic performance of hydroxyapatites for gas-phase dehydration of lactic Acid”, ACS Catal., 2014, 4, 1931-1943.
[2] S.-H. Chai, L. Tao, B. Yan, J. C. Vedrine, Y. Liang, and B.-Q. Xu*, “Sustainable production of acrolein: effects of reaction variables, modifiers doping and ZrO2 origin on the performance of WO3/ZrO2 catalyst for the gas-phase dehydration of glycerol”, RSC Adv., 2014, 4, 4619-4630.
[1] S.-H. Chai, B. Yan, L. Tao, Y. Liang, and B.-Q. Xu*, “Sustainable production of acrolein: catalytic gas-phase dehydration of glycerol over dispersed tungsten oxides on alumina, zirconia and silica”, Catal. Today, 2014, 234, 215-222.