师资

EN       返回上一级       师资搜索
张文龙
助理教授
zhangwl@sustech.edu.cn

个人简历

本科:

数学系, 南京大学, 2007年9月- 2011年7月.

博士研究生:

博士研究生 , 计算数学 , 中国科学院数学与系统科学研究院 , 2011年9月 - 2014年9月 ,

博士导师: 陈志明, 研究员, 计算数学与科学工程计算研究所

博士:

计算数学, 数学系, 巴黎高等师范学校, 2014年9月 - 2017年7月,

博士导师:Habib Ammari, 教授, 苏黎世联邦理工学院.

 

博士后:

数学系, 南方科技大学, 2017年9月-2019年10月  

访问助理教授:

数学系, 南方科技大学, 2019 年11月-2022年5月  

助理教授:

数学系, 南方科技大学, 2022年6月至今

 

研究方向

反问题

不确定性分析

经验过程应用

成像方法

均匀化理论

偏微分方程数值方法

 

教学

2017-2018 Teaching assistant for  'Finite element method'

2017-2018 Teaching assistant for 'Selected topics in partial differential equations’

2019 Teach tutorial classes of 'Linear algebra' including Chinese class and English class

2020 Teach classes of  'Linear algebra' and 'Ordinary differential equations A' (2020 年春季学期常微分方程A,2020年秋季学期线性代数I-A)

2021 Teach class of 'Ordinary differential equations A' (2021年春季学期常微分方程A)

2021 Teach classes of 'Linear algebra' and 'Ordinary differential equations B' (2021 年秋季学期常微分方程B,2021年秋季学期线性代数I-A)

 

发表论著

[1] H. Ammari, G.S. Alberti, B. Jin, J.-K. Seo and W. Zhang, The Linearized inverse problem in multifrequency electrical impedance tomography, SIAM Journal on Imaging Sciences, 2016, 9:1525-1551.

[2] H. Ammari, T. Widlak and W. Zhang, Towards monitoring critical microscopic parameters for electropermeabilization, Quarterly of Applied Mathematics, 2017, 75: 1-17.

[3] H. Ammari, L. Qiu, F. Santosa and W. Zhang*, Determining anisotropic conductivity using Diffusion Tensor Magneto-acoustic Tomography with Magnetic Induction, Inverse Problems, 2017, 33: 125006.

[4] Z. Chen, R. Tuo and W. Zhang, Stochastic Convergence of A Nonconforming Finite Element Method for the Thin Plate Spline Smoother for Observational Data, SIAM Journal on Numerical Analysis, 2018, 56: 635-659.

[5] H. Ammari, B. Jin and W. Zhang*, Linearized Reconstruction for Diffuse Optical Spectroscopic Imaging, Proceedings of the Royal Society A, 2018, 475: 20180592.

[6] Z. Chen, R. Tuo and W. Zhang, A Balanced Oversampling Finite Element Method for Elliptic Problems with Observational Boundary Data, Journal of Computational Mathematics, 2020, 38, 355-374.

[7] M. V. Klibanov, J. Li and W. Zhang, Convexification of Electrical Impedance Tomography with Restricted Dirichlet-to-Neumann Map Data, Inverse problems, 2019, 35: 035005.

[8] M. V. Klibanov, J. Li and W. Zhang, Convexification for the Inversion of a Time Dependent Wave Front in a Heterogeneous Medium, SIAM Journal on Applied Mathematics, 2019, 79(5), 1722–1747.

[9] M. V. Klibanov, J. Li and W. Zhang*, Convexification for an inverse parabolic problem, Inverse problems, 2020, 36: 085008.

[10]V. Klibanov, J. Li and W. Zhang*, Linear Lavrent’ev Integral Equation for the NumericalSolution of a Nonlinear Coefficient Inverse Problem, SIAM Journal on Applied Mathematics, 2021, 81(5), 1954–1978.

[11] Z. Chen, W. Zhang, J. Zou, Stochastic convergence of regularized solutions and their finite element approximations to inverse source problems, SIAM Journal on Numerical Analysis, 2022, 60(2), 751-780.

[12] M. V. Klibanov, J. Li and W. Zhang*, A Globally Convergent Numerical Method for a 3D Coefficient Inverse Problem for a Wave-Like Equation, SIAM Journal on Scientific Computing, 44(5), A3341–A3365.